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Abstract. This paper investigates the suitability of visualizing global 3D envi-
ronment maps generated from RGB-D sensor data in teleoperation user inter-
faces for service robots. We carried out a controlled experiment involving 27 
participants, four teleoperation tasks, and two types of novel global 3D mapping 
techniques. Results show substantial advantages of global 3D mapping over a 
control condition for three of the four tasks. Global 3D mapping in the user in-
terface lead to reduced search times for objects and to fewer collisions. In most 
situations it also resulted in less operator workload, higher situation awareness, 
and higher accuracy of operators’ mental models of the remote environment. 
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1 Introduction 

Service robots may assist people in the home in the future. Frail elderly people and 
people with disabilities may particularly benefit from such robots. However, there are 
still numerous technical challenges associated with building reliable autonomous 
robots for unstructured environments. For example, robots can fail to find navigation 
paths through narrow passages or objects to be fetched can fail to be detected in clut-
tered scenes or under low illumination. Semi-autonomous robots [1] may be a viable 
shorter-term solution: when a robot cannot complete a task, a remote human operator 
takes control and tries to solve the local problem. The design of suitable teleoperation 
user interfaces therefore remains an important subject of research. 

Studies have shown that user interfaces merely relying on the visualization of a 
video stream from a camera on the robot and a floor map lead to high collision rates 
[2], long task completion times [3, 2], high operator workload [4], and low situation 
awareness [5]. The camera’s narrow field of view prevents operators from acquiring 
environmental cues from the surrounding. Also, people form mental models of spatial 
environments and rely on them for spatial reasoning [6]. In video-centric interfaces, 
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operators need to infer a spatial mental model from two-dimensional data, which may 
result in less accurate models and negatively affect performance. 

It has thus been established that teleoperators need more comprehensive infor-
mation on the robot’s environment to be able to control it effectively. Visualizing data 
from various sensors in separate areas of the screen has however shown to be prob-
lematic with regard to operators’ task performance and cognitive load [2, 4]. To avoid 
divided attention and information overload, sensor fusion, augmentation, and ecologi-
cal interfaces, where data from different sensors are integrated with direct spatial 
reference to the environment, have been proposed [7, 2]. To address the field of view 
problem, the use of multiple and panospheric cameras has been explored [8]. Howev-
er, such approaches impose a high load on network bandwidth while not allowing, for 
example, assessment of distances between objects. Approaches where 2D map and 
video are enriched with a schematic 3D environment model have shown to lead to 
improvements in user performance [3, 4] but they require manual modeling of each 
apartment and can be misleading when environment features have changed. 

With the advent of affordable depth sensors, techniques for generating complete 
3D representations of the environment have emerged more recently. With infrared 
sensors, time-of-flight cameras, or 3D laser scanners, the robot acquires 3D data while 
moving around. Algorithms generate, and update in real-time, a global 3D environ-
ment map in form of a voxel-based point cloud [9, 10] or a set of geometric primitives 
[11, 12]. Research on global 3D environment mapping has so far focused on algo-
rithms and applications in autonomous reasoning [9-12]. In this paper, we examine 
the suitability of displaying global 3D environment maps during teleoperation. The 
maps provide a teleoperator with recent and detailed information on objects all around 
the robot, on environment features further away, and on distances between objects. 

2 User Interface, Robot, and Mapping Techniques 

The user interface employed in this study (Figs. 1 and 2) was developed as part of a 
wider semi-autonomous human-robot interaction framework for assisting elderly 
people in the home in an iterative user-centered design process involving studies with 
a total of 241 participants [1]. The user interface’s main intended user group is teleas-
sistance staff but we do not regard its use limited to professional applications. The 
user interface is integrated with the Care-O-bot 3 service robot [13] (Fig. 2). Care-O-
bot 3 has an omni-directional base, three laser range finders, and a Kinect RGB-D 
camera. During teleoperation, the robot autonomously avoids obstacles of up to 40cm 
above ground based on 2D laser range data but not currently higher objects. 

The user interface is based on RViz as part of ROS (Robot Operating System) 
Electric [15]. Following the idea of ecological interfaces [2], it offers the following 
elements visualized in a unified way in a single 3D scene (Figs. 1 and 2): (1) laser-
based 2D floor map (grey/black), (2) laser-based historic obstacle map (purple, active 
in Fig. 2 only), (3) live laser data (red), (4) live 3D colored point cloud in the robot’s 
field of view, (5) global 3D environment map (voxel-based or geometric), (6) robot in 
accurate size and shape, (7) collision-relevant safety area around the robot (“foot-



print”, yellow, Fig. 2), (8) a sectioned band of collision indicators around the robot 
lighting up when the robot slows down on approaching an obstacle or movement in a 
direction is not possible (not shown in Figs. 1 and 2). As a ninth element, a video 
image is overlaid. Users can freely rotate, pan, and zoom the 3D scene using the 
mouse. Navigation of the mobile platform is realized with the SpaceNavigator 3D 
mouse [14] in the coordinate system of the operator‘s current viewpoint on the scene.  

 
Fig. 1. User interface in zoomed-out perspective with apartment-sized environment mapped 
using voxel-based mapping technique 

Two types of global 3D mapping techniques have been implemented. The voxel-
based technique is based on OctoMap [9], a probabilistic approach that uses octrees to 
represent 3D occupancy grids. The geometric 3D mapping technique [11] segments 
consecutive point clouds into homogeneous regions, derives geometric primitives like 
planes or cylinders, and merges them into a map. From a technical point of view, its 
main advantages over the voxel-based technique are lower network bandwidth con-
sumption and less required client-side computational resources for display. 

3 Research Questions 

We assumed that, due to the complete 3D representation of the environment, global 
3D environment maps in the user interface should usually lead to improved user per-
formance, decreased workload, increased situation awareness, and more accurate 
mental models of the remote environment. On the other hand, it is conceivable that 
they might not be needed in some situations or even be disadvantageous. For exam-
ple, the visualization of a global 3D map might negatively impact user performance 
because close objects can obstruct the view on task-relevant objects behind them or 
lead to higher cognitive load due to additional interpretation effort. Concerning the 



suitability of voxel-based versus geometric mapping, likewise, arguments for differ-
ences in both directions are feasible. For example, the more simplistic, reduced visu-
alization of the environment with a geometric approach might reduce required inter-
pretation efforts. On the other hand, the algorithmic processing of the point cloud 
necessarily introduces artifacts that might be confusing. 

Due to a wide range of factors that might affect results and a lack of directly com-
parable studies in the literature, we adopted an exploratory attitude towards this re-
search. Our main goal was to identify usage scenarios where global 3D environment 
maps in the remote user interface would be advantageous as well as scenarios where 
this would rather not be the case. We were further interested in potential differences 
in the suitability of voxel-based versus geometric mapping approaches. 

4 Method 

Research Design. We adopted a between-subjects experimental design with three 
conditions: control condition without global 3D environment mapping (C), voxel-
based global 3D mapping condition (V), geometric global 3D mapping condition (G). 
The user interface did not differ between conditions other than in the type (or ab-
sence) of global 3D environment mapping. All other visualization elements described 
in Section 2 were available in all conditions. 

Participants. 27 people participated in the experiment (9 in each group). Their age 
ranged from 19 to 41 years (mean age group C: 27.4; V: 23.4; G: 26.7). All partici-
pants were male to avoid a confounding effect due to known gender differences in 
spatial problem solving [19]. Participants had no previous experience with robots, 
teleoperation user interfaces, or 3D mice. They used computers at least 12 hours per 
week but played 3D games or used professional 3D applications only up to 2 hours 
per week (mean 3D usage hours C: 0.5; V: 0.6; G: 0.5). All but two participants had 
university degrees or were currently pursuing such. Participants received €30 of com-
pensation. Participants underwent a spatial ability test (abbr. Vandenberg Mental 
Rotations Test) [20] and were assigned to experimental conditions based on their 
score in a balanced way (mean score C: 4.4 out of 6; V: 4.3; G: 4.6). Participants also 
underwent a Snellen visual acuity test and all achieved a score of 5 or higher (mean 
score C: 6.7; V: 7.2; G: 6.1). According to a further color vision test, one participant 
in each group did not have full color vision. 

Metrics. We employed objective and subjective metrics to investigate several con-
structs. Metrics mainly relating to performance were: time to complete the task, 
length of the path the robot traveled, and robot rotation. We assessed perceived work-
load with the NASA Task Load Index (TLX) in its unweighted (raw) form [16] post-
task. We further measured perceived situation awareness post-task with the three-
dimensional Situation Awareness Rating Technique (SART) [17]. We adjusted the 
SART scale to a range from 0 to 100. To assess perceived quality of the mental model 
of the remote environment, we employed (6) the subscale “spatial situation model” 



(SSM) from the Spatial Presence Questionnaire MEC-SPQ [18] post-experiment. For 
applicable tasks, we also asked participants to recall the number of obstacles around 
the robot as an indicator of the accuracy of their spatial mental model. For one task, 
we further recorded the number of collisions as a performance metric and an implicit 
indicator of situation awareness. 

Procedure. The experiment took place in three rooms connected by two corridors. We 
installed 80 household furniture items and objects to simulate a home environment 
with a kitchen, a living room, and a bedroom. To control for illumination we covered 
all windows and used interior lighting only. Participants operated the robot from a 
separate fourth room and did not see the robot or its environment until after the trials. 

After initial spatial ability and vision tests, participants underwent a 45-min train-
ing on robot hardware and sensors, user interface concept and visualization elements, 
SpaceNavigator device, teleoperation (in simulation). The type of global mapping 
visualized during training corresponded to the participants’ experimental condition. 
Participants then carried out four teleoperation tasks (Fig. 2) with the real robot and 
filled in a questionnaire after each task. The tasks were designed to cover a range of 
different scenarios. At the beginning of each task, participants were confronted with a 
problem of the robot and asked to solve it quickly but without becoming stressed or 
sacrificing accuracy. The room’s global map was always up to date, assuming the 
robot had moved around prior to contacting the teleoperator for assistance. 

 
                    Task 1                                        Task 2                                       Task 3                                          Task 4  

                    Task 2 Condition C                                           Task 2 Condition V                                      Task 2 Condition G 

Fig. 2. Overview of the task setups with robot at starting positions (upper row); robot during 
task 2 at similar positions in the three experimental conditions (lower row) 

Task 1: For this task in the kitchen only, we simulated darkness, so no video and 
only grayscale live depth data were available. The global maps were generated while 
the room was still illuminated. The robot’s problem was that it could not find a medi-
cine package to be fetched. The participant was told that the local elderly user stated 
to have left the package on the chair in the kitchen. The goal was to find the chair 
(which was hidden in a corner and there were three such corners) and approach it.  



Task 2: This task took place in the living room. The robot’s problem was that it 
could not find a navigation path to its destination due to a narrow passage. Partici-
pants were asked to navigate the robot to the other side of the room. There were ele-
vated protruding obstacles so it was possible for the robot to collide. Participants were 
asked to make the robot pass without collisions.  

Task 3: This task took place in the corridor and the robot’s problem was that it 
could not find a navigation path to the bedroom. All obstacles were on the floor. To-
wards the end of the task, participants had to push aside a carton with the robot.  

Task 4: This task took place in the bedroom. As in task 1, participants had to find 
an object but it was small and without a characteristic shape (a rectangular pack of tea 
bags). The room was cluttered with objects and there were five possible hiding places. 

After the last task, the session was recapitulated, participants were interviewed on 
their impressions, and then completed the post-experiment questions.  

Data Analysis. We performed pairwise group comparisons using two-tailed independ-
ent samples t-tests, assuming normal distribution. For the collision metric only we 
used a two-tailed Wald test, assuming Poisson distribution. We used robust estimation 
of variance (Huber-White sandwich). Due to the exploratory nature of the experiment 
we did not adjust for multiple testing [21].  

5 Results 

All participants were able to complete all tasks, indicating effectiveness in all experi-
mental conditions. Results on the investigated metrics are described subsequently. 

Task 1: Finding a Large Object. As shown in Table 1, participants in both global map 
conditions were able to find the target object (chair) significantly faster with much 
shorter path lengths and less required robot rotation than in the control condition. 
They also experienced significantly lower workload and were subjectively more 
aware of the situation in conditions V and G. There was a tendency for condition V to 
be somewhat more efficient than condition G but statistical significance is only 
reached for the path length metric.  

Task 2: Navigating Around Elevated Obstacles. Results in Table 2 show that task 2 
was completed the fastest in the control condition. The difference to both, conditions 
V and G is statistically significant. Perceived workload was highest in condition G 
and the difference is significant over conditions C and V. In condition C, object colli-
sions were most frequent and participants recalled significantly less obstacles than in 
the global map conditions. No significant differences were found for path lengths, 
robot rotation, perceived situation awareness. 

Task 3: Navigating Around Obstacles on the Floor. Results for task 3 (Table 3) show 
no significant differences between conditions. There was a tendency to report more 
obstacles in condition V than in conditions G and C. 



Task 4: Finding a Small Object. As shown in Table 4, participants in condition V 
found the pack of tea bags the fastest, with shortest path lengths, least rotation, and 
least cognitive load, statistically significant over conditions C and G. Perceived situa-
tion awareness was highest in condition V with a significant difference over C but just 
as a tendency over G. There was a tendency for better suitability of condition G than 
C for this task but the differences are not statistically significant. 

Spatial Situation Model. Results of the post-experiment MEC-SPQ SSM subscale 
(Table 5) show that participants rated the perceived quality of their mental model of 
the situation significantly higher in condition V than in conditions C and G. 

Table 1. Results of task 1 (conditions: C - control; V - voxel map; G - geometric map) 

Metric Means with 95% confidence intervals Difference betw. means 
Task completion time C: 235s 

V: 109s 
G: 126s  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.001 ** 
p = 0.004 ** 
p = 0.376 

Robot path length C: 8.4m 
V: 3.1m 
G: 4.2m  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.001 ** 
p = 0.004 ** 
p = 0.031 * 

Robot rotation C: 2.5rev 
V: 0.6rev 
G: 0.8rev  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.000 ** 
p = 0.000 ** 
p = 0.542 

Perceived workload 
(NASA-TLX raw) 
Scale: 0-100 

C: 40.4 
V: 16.8 
G: 23.1  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.002 ** 
p = 0.029 * 
p = 0.115 

Perceived situation 
awareness (SART) 
Scale: 0-100 

C: 55.9 
V: 72.0 
G: 72.9  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.017 * 
p = 0.011 * 
p = 0.885 

Table 2. Results of task 2 (conditions: C - control; V - voxel map; G - geometric map) 

Metric Means with 95% confidence intervals Difference betw. means 
Task completion time C: 121s 

V: 171s 
G: 206s  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.029 * 
p = 0.001 ** 
p = 0.154 

Robot path length C: 5.6m 
V: 5.5m 
G: 5.4m  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.405 
p = 0.406 
p = 0.126 

Robot rotation C: 0.6rev 
V: 0.7rev 
G: 0.8rev  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.579 
p = 0.118 
p = 0.182 

Perceived workload 
(NASA-TLX raw) 
Scale: 0-100 

C: 36.8 
V: 34.9 
G: 52.0  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.754 
p = 0.010 * 
p = 0.003 ** 

Perceived situation 
awareness (SART) 
Scale: 0-100 

C: 53.1 
V: 59.3 
G: 49.1  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.331 
p = 0.483 
p = 0.156 

Object collisions C: 1.7 
V: 0.6 
G: 0.9  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.044 * 
p = 0.013 * 
p = 0.352 

Obstacles recalled C: 2.1 
V: 3.3 
G: 3.4  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.001 ** 
p = 0.001 ** 
p = 0.771  



Table 3. Results of task 3 (conditions: C - control; V - voxel map; G - geometric map) 

Metric Means with 95% confidence intervals Difference betw. means 
Task completion time C: 139s 

V: 155s 
G: 160s  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.333 
p = 0.195 
p = 0.722 

Robot path length C: 6.1m 
V: 6.0m 
G: 6.1m  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.780 
p = 0.902 
p = 0.834 

Robot rotation C: 0.6rev 
V: 0.6rev 
G: 0.6rev  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.689 
p = 0.545 
p = 0.846 

Perceived workload 
(NASA-TLX raw) 
Scale: 0-100 

C: 37.1 
V: 30.9 
G: 33.2  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.230 
p = 0.515 
p = 0.737 

Perceived situation 
awareness (SART) 
Scale: 0-100 

C: 60.7 
V: 65.3 
G: 62.0  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.493 
p = 0.817 
p = 0.636 

Obstacles recalled C: 2.9 
V: 3.3 
G: 2.8  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.264 
p = 0.748 
p = 0.057 

Table 4. Results of task 4 (conditions: C - control; V - voxel map; G - geometric map) 

Metric Means with 95% confidence intervals Difference betw. means 
Task completion time C: 215s 

V: 97s 
G: 174s  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.001 ** 
p = 0.317 
p = 0.014 * 

Robot path length C: 5.9m 
V: 2.8m 
G: 4.0m  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.020 * 
p = 0.147 
p = 0.020 * 

Robot rotation C: 2.2rev 
V: 1.2rev 
G: 2.0rev  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.013 * 
p = 0.518 
p = 0.018 * 

Perceived workload 
(NASA-TLX raw) 
Scale: 0-100 

C: 42.5 
V: 21.6 
G: 36.9  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.017 * 
p = 0.547 
p = 0.021 * 

Perceived situation 
awareness (SART) 
Scale: 0-100 

C: 55.8 
V: 72.8 
G: 60.1  

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.029 * 
p = 0.514 
p = 0.133 

Table 5. Results of MEC-SPQ SSM (conditions: C - control; V - voxel map; G - geometric map) 

Metric Means with 95% confidence intervals Difference betw. means 
Perceived quality of 
spatial situation model 
5-point scale 

C: 3.6 
V: 4.3 
G: 3.9 

 

C vs. V: 
C vs. G: 
V vs. G: 

p = 0.006 ** 
p = 0.190 
p = 0.031 * 

6 Discussion 

When searching for a large object, there were strong benefits of using either type of 
global 3D map, voxel-based or geometric. Participants were around twice as fast in 
the mapping-enabled conditions than in the control condition when navigating the 
robot to the hidden chair in task 1. They also experienced less cognitive load and 



higher situation awareness. When searching for a smaller object (task 4), benefits 
were only clear in case of the voxel-based mapping approach. Likely, due to the more 
schematic and coarse environment representation in the geometric map, operators 
could not obtain a direct cue as to the target object’s location. There still was some 
non-significant tendency for benefits of using the geometric map over not using a 3D 
map. Perhaps operators had better overall orientation than without a global 3D map. 

When navigating around obstacles, benefits of using global 3D maps were only 
apparent for task 2, where obstacles were elevated. Interestingly, users in the control 
condition accomplished this task the fastest. However, they also had the highest num-
ber of collisions (C: 1.7, V: 0.6, G: 0.9 collisions on average). It seems that operators 
rushed through the obstacle course unaware of the existence or proximity to obstacles. 
This is corroborated by the fact that substantially too few obstacles were recalled in 
the control condition. A further interesting result for task 2 is that operators using the 
geometric map experienced higher workload than in the two other conditions. For 
other tasks too, there was a tendency for higher workload in the geometric condition 
than in the voxel condition. Perhaps this can be attributed to some ambiguity in visu-
alization due to artifacts of algorithmic processing compared to the more unprocessed 
representation in a voxel map. The fact that results for all metrics were similar for 
task 3 suggests that this might be a scenario without benefits of using global 3D map-
ping. A likely reason is that all obstacles were on the floor and thus well visible 
through laser scanner visualization in the control condition too.  

Participants using voxel-based maps rated the quality of their mental model of the 
remote environment highest on average. Results on the recall metric further suggest 
that whether or not 3D mapping leads to more accurate mental models may also de-
pend on the environment or task. For task 2, participants in both mapping-enabled 
conditions were clearly much more accurate in recalling obstacles (C: 2.1, V: 3.3, G: 
3.4 recalled; correct: 4). In task 3, where all obstacles were on the floor, no significant 
differences were found. Results thus suggest that global 3D maps tend to support the 
formation of accurate mental models but need not necessarily in every situation. 

To summarize, visualizing global 3D environment maps in the teleoperation user 
interface in most situations showed to have positive effects on user performance, 
workload, situation awareness, and accuracy of users’ spatial mental models. It sub-
stantially reduced search times for objects and reduced collisions when navigating 
around elevated obstacles. On a broad level, our results corroborate the findings of 
earlier studies on the benefits of 3D-enhanced teleoperation user interfaces [2, 3]. The 
automated, sensor-based, and fully three-dimensional mapping techniques evaluated 
in this paper can be regarded an evolution of those earlier approaches. Benefits of the 
voxel-based mapping technique were overall more pronounced than of the geometric 
mapping technique but the geometric mapping technique tended to show benefits over 
the control condition too. Due to its technical advantages, geometric mapping should 
be considered especially when identifying fine detail in the environment is not crucial. 
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